Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 42(7): 637-646, July 2009. ilus, graf
Article in English | LILACS | ID: lil-517796

ABSTRACT

Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.


Subject(s)
Adult , Humans , Male , Computer Simulation , Face , Pattern Recognition, Visual/physiology , Photic Stimulation/methods , Fourier Analysis
2.
Braz. j. med. biol. res ; 37(2): 227-234, Feb. 2004. ilus, tab, graf
Article in English | LILACS | ID: lil-354171

ABSTRACT

When contrast sensitivity functions to Cartesian and angular gratings were compared in previous studies the peak sensitivity to angular stimuli was reported to be 0.21 log units higher. In experiments carried out to repeat this result, we used the same two-alternative forced-choice paradigm, but improved experimental control and precision by increasing contrast resolution from 8 to 12 bits, increasing the screen refresh rate from 30 Hz interlaced to 85 Hz non-interlaced, linearizing the voltage-luminance relation, modulating luminance in frequencies that minimize pixel aliasing, and improving control of the subject's exposure to the stimuli. The contrast sensitivity functions to Cartesian and angular gratings were similar in form and peak sensitivity (2.4 cycles per visual degree (c/deg) and 32 c/360º, respectively) to those reported in a previous study (3 c/deg and 32 c/360º, respectively), but peak sensitivity to angular stimuli was 0.13 log units lower than that to Cartesian stimuli. When the experiment was repeated, this time simulating the experimental control level used in the previous study, no difference between the peak sensitivity to Cartesian and angular stimuli was found. This result agrees with most current models that assume Cartesian filtering at the first visual processing stage. The discrepancy in the results is explained in part by differences in the degree of experimental control.


Subject(s)
Humans , Contrast Sensitivity , Photic Stimulation , Models, Theoretical , Sensory Thresholds
SELECTION OF CITATIONS
SEARCH DETAIL